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Reference-beam diffraction (RBD) is a recently developed phase-sensitive

X-ray diffraction technique that incorporates the principle of multiple-beam

diffraction into the standard oscillating-crystal data-collection method [Shen

(1998). Phys. Rev. Lett. 80, 3268±3271]. Using this technique, a large number of

multiple-beam interference pro®les can be recorded simultaneously on an area

detector, from which a large number of triplet phases of Bragg re¯ections can be

determined in a crystallography experiment. In this article, both the theoretical

developments and the experimental procedures of the RBD technique are

described in detail. Approximate theoretical approaches for RBD are outlined

and simple analytical expressions are obtained that provide the basis for an

automated data-analysis procedure that can be used to extract triplet phases

from a large number of measured reference-beam diffraction pro®les.

Experimental examples are given for a variety of crystals including GaAs,

tetragonal lysozyme and AlPdMn quasicrystal, using both image plates and a

charge-coupled device (CCD) as the area detector. Possible uses of the

measured phases for crystal structure determination are discussed as well as

future prospects of the RBD technique.

1. Introduction

X-ray crystallography is a widely used method in structural

biology and materials sciences for solving crystal structures

with atomic scale resolution. In a typical crystallography

experiment, a large number of diffraction peaks or Bragg

re¯ections are recorded on an area detector while rotating or

oscillating a crystal specimen (Fig. 1a). The intensity recorded

for each Bragg re¯ection depends only on the magnitude of its

structure factor and not on its phase, which is also needed to

determine the atomic positions in a crystal. This is the

fundamental phase problem in diffraction and its general

solution remains an active area of research (Hendrickson,

1991; Miller et al., 1993; Giacovazzo et al., 1994; Tegze &

Faigel, 1996; Elser, 1999).

Recently, we have developed a phase-sensitive reference-

beam diffraction (RBD) technique that has the potential to

provide a practical solution to the phase problem in crystal-

lography (Shen, 1998, 1999a; Shen et al., 1999, 2000). The

technique is based on the principle of multiple-beam or three-

beam diffraction (MBD), which has been known to contain

structural phase information (Hart & Lang, 1961; Colella,

1974; Post, 1977; Chapman et al., 1981; Chang, 1982;

Juretschke, 1982; Schmidt & Colella, 1985; Tischler &

Batterman, 1986; Shen, 1986; Shen & Colella, 1987; Shen &

Finkelstein, 1990; Chang et al., 1991; Weckert et al., 1993;

Colella, 1995a; Weckert & HuÈ mmer, 1997; Mathiesen et al.,

1998; Chang, 1998). In the past, the intensity pro®les of the

three-beam diffraction are measured one at a time in an

experiment, which is very inef®cient and time consuming

(Weckert & HuÈ mmer, 1997) and seriously limits the practical

implications of the technique. The new RBD method, on the

other hand, incorporates the principle of multiple-beam

diffraction into the most common crystallographic data-

collection technique ± the oscillating crystal method ± and

allows a parallel collection of many three-beam interference

pro®les. It therefore provides a way to measure both the

magnitudes and the triplet phases of a large number of Bragg

re¯ections in a time period that is similar to existing crystal-

lographic techniques such as multiple-wavelength anomalous

diffraction (Hendrickson, 1991).

As illustrated in Fig. 1, the RBD technique is a simple

conceptual modi®cation (Shen, 1998) to the conventional

oscillation camera set-up in direct-beam geometry. Instead of

being perpendicular to the incident X-ray beam, the oscilla-

tion axis in RBD geometry is tilted by the Bragg angle �G of a

strong reference re¯ection, G, which is aligned to coincide

with the oscillation axis '. In this way, re¯ection G can be kept

fully excited throughout the crystal oscillation and the inten-

sities of all Bragg re¯ections recorded on an area detector



during such an oscillation can be in¯uenced by the inter-

ference arising from the G-re¯ected reference wave and thus

are sensitive to the relative phases of the re¯ections involved.

A complete reference-beam interference pro®le is measured

by taking multiple exposures while stepping angle � through

the G-re¯ection rocking curve. In this procedure, the refer-

ence re¯ection G serves as a single detour re¯ection that is

common to all Bragg re¯ections (main or primary re¯ections)

that are recorded on the area detector. This role reversal of

the aligned re¯ection in RBD provides several simpli®ed

theoretical and experimental considerations as compared to

the conventional  -scanning multiple-beam experiments.

The purpose of this article is to provide a comprehensive

and thorough description of the RBD technique, both in

theory and in experimental procedure. In x2, we outline the

theoretical considerations that are necessary to describe a

RBD process and to quantitatively ®t the RBD intensity

pro®les and retrieve the phase information. In particular, we

compare two approximate approaches, a second-order Born

approximation and an expanded distorted-wave approxima-

tion, to the results of an exact n-beam dynamical theory

(Colella, 1974). These approximate theories provide the basis

for simple analytical expressions that can be used in an

automated RBD data-analysis procedure for a large number

of Bragg re¯ections. Also included in x2 are several geome-

trical factors such as Lorentz and polarization factors that may

affect the intensities in a RBD experiment. In xx3 and 4, we

present through several examples the details of the RBD data-

collection technique and data-reduction and analysis methods.

The procedures have been established in such a way that

existing crystallographic software packages can be applied

whenever it is feasible in order to make the RBD technique as

automated as possible. Finally, in x5, we present the strategies

for making use of the experimentally measured phases and

discuss some of the current problems in the RBD experiment

and their potential solutions in the near future.

2. Theoretical considerations

The three-beam diffraction process that governs a RBD

interference involves the reference re¯ection G, a primary

re¯ection H and a coupling re¯ection H ÿ G. The geometrical

condition that the H re¯ection has to satisfy in the reference-

beam diffraction process is exactly the same as the one that

can be found in the literature for conventional three-beam

diffraction (Cole et al., 1962; Caticha-Ellis, 1975). If �H is the

Bragg angle for H and �G for G, then the scattering plane

de®ned by k0 and G must form a speci®c rotation (oscillation)

angle ' with respect to the plane formed by H and G in order

for all three reciprocal nodes, O, G and H, to be on the sphere

of re¯ection simultaneously. It can be shown that this rotation

angle ' is given by (Caticha-Ellis, 1975)

cos ' � �sin �H ÿ cos� sin �G�= sin � cos �G; �1�

where � is the angle between the H and the G reciprocal

vectors. When �G equals zero, (1) reduces to the condition for

the conventional oscillation method in Fig. 1(a).

When the geometric RBD condition equation (1) is satis-

®ed, the diffracted intensity IH for any H recorded on the area

detector in Fig. 1(b) is modi®ed or in¯uenced by the excitation

of the G re¯ection and therefore cannot be described by the

familiar kinematic theory which is based on the single scat-

tering events only. The goal of this section is to provide a

summary of several theories that are suitable for the RBD

process along with a few geometric factors that can affect the

RBD intensities.

2.1. NBEAM dynamical theory

Since it is intrinsically a three-beam diffraction process, the

reference-beam diffraction can be fully described by the

NBEAM dynamical theory developed by Colella (1974), with

a slight modi®cation. Instead of calculating the diffracted

intensity for the `aligned' re¯ection G, the intensity compu-

tation is performed for the re¯ection H that sweeps through

the Ewald sphere. In Fig. 2, we show an example of such

calculations for GaAs G � �004� and H � �317�, both in thick-

crystal Bragg geometry with G as the surface normal. The

intensities (open circles) in Fig. 2(a) are integrated over the

oscillation angle ' as in any conventional oscillation image,

and are presented as a function of the rocking angle

�� � � ÿ �G of the G re¯ection. An intensity contour map
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Figure 1
Schematics of (a) conventional oscillation set-up used in X-ray crystal-
lography, and (b) new reference-beam diffraction in Bragg-inclined
geometry, where two sets of diffraction patterns (black and gray)
interfere and generate a phase-sensitive diffraction image on an area
detector.
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(on logarithmic scale) is shown in Fig. 2(b) as a function of

both angles to illustrate the general behavior of three-beam

diffraction in reciprocal space.

The intensity pro®le shown in Fig. 2(a) exempli®es the

typical three-beam interference pattern that can be measured

in a RBD experiment. The interference is sensitive to the

phases of the re¯ections involved, as already illustrated in

Colella's original article (Colella, 1974). There are, however,

two drawbacks of this rigorous dynamical theory. First, since

the theory is based on numerical calculations, it is not easy to

visualize the exact phase dependence that exists in the inter-

ference effect. Second, considerable computational proce-

dures make it dif®cult to adapt the theory for any automated

data analysis, especially for a large number of Bragg re¯ec-

tions that can be recorded on an area detector in a RBD

experiment. We therefore seek alternative approaches that

may not be exact as the NBEAM but nonetheless provide

analytical expressions with an apparent phase dependence.

Over the years, approximate multiple-beam diffraction

theories have been developed by several authors (Juretschke,

1982, 1984; Chang, 1984; Shen, 1986; Thorkildsen, 1987;

Thorkildsen & Larsen, 1998; Shen, 1999b,c). In the following

two sections, we outline only two such theories: the second-

order Born approximation (Shen, 1986) and the expanded

distorted-wave approximation (Shen, 1999b,c), which has

been developed most recently and is tailored speci®cally for

the RBD geometry.

2.2. Second-order Born approximation

According the standard scattering theories in quantum

mechanics and electrodynamics, a scattered X-ray wave ®eld

D(r) from a crystal can be represented by a Born approxi-

mation series, with its zeroth-order solution D(0) being the

incident-wave, ®rst-order solution D(1) being a singly scattered

wave in the usual kinematic or two-beam approximation, and

second-order solution D(2) representing a doubly scattered

wave with three-beam interactions, and so on (Shen, 1986):

D�r� � D�0� �D�1� �D�2� � . . . : �2�
It follows that the conventional oscillating crystal geometry in

Fig. 1(a) is based on observing the two-beam re¯ections D(1)

with the rotation axis lined up on the incident beam D(0), while

the reference-beam geometry in Fig. 1(b) is automatically set

up to observe the three-beam interactions D(2) with the

rotation axis chosen to diffract a reference beam D(1).

Using the Born-series equation (2), it can be shown (Shen,

1998) that a RBD process can be described within the second-

order Born approximation and that the RBD interference

effect is sensitive to the invariant triplet phase:

� � �HÿG � �G ÿ �H;

where the �H's are the phases of the corresponding structure

factors. In addition to �, the phase of the G-re¯ected wave can

be tuned by rocking the tilt angle � through the G-re¯ection

rocking curve, much like in an X-ray standing-wave experi-

ment (Batterman, 1964). Observations of intensity IH as a

function of � for each of the Bragg re¯ections recorded on the

area detector yields a complete interference pro®le IH(�),

which is given by a normalized intensity (Shen, 1998, 1999a):

IH��� � 1� 2jFHÿG=FHj�RG����1=2 cos��� �G����; �3�
where RG(�) is the re¯ectivity, �G(�) is the dynamical phase

shift of the reference re¯ection G and IH(�) has been

normalized to the two-beam intensity. We note here that the

factor of 2 in equation (3) was missing in Shen's (1998, 1999a)

papers because of an error in the earlier derivations that

�RG����1=2 exp�i�G�=w, with w being the Darwin width, should

be equivalent to 1=�2��� instead of 1=��.
An example of the RBD pro®les calculated using equation

(3) is shown in Fig. 2(a) as a dashed curve. We see that the

second-order Born approximation agrees with the NBEAM

result very well, except near the center where dynamical

effects such as extinction and higher-order multiple scattering

dominate. Once the reference re¯ection G is chosen in an

experiment, both RG(�) and �G(�) in equation (3) are known

and common to all re¯ections recorded on the area detector,

and therefore any difference in IH(�) between two recorded

re¯ections is due mostly to the difference in their triplet

phases �.

Figure 2
(a) Theoretical calculations of a reference-beam diffraction pro®le using
NBEAM dynamical theory (circles), second-order Born approximation
(dashed curve) and expanded distorted-wave approximation (EDWA,
solid curve). (b) Intensity contour map using NBEAM. Both plots are for
GaAs, G = (004) and H = (317).



In practice, the dynamical phase shift �G(�) can be

approximated by a hyperbolic tangent function (Shen, 1999a),

�G��� � �=2f1ÿ tanh��� ÿ �G�=��g; �4�

which closely resembles the true phase function in dynamical

diffraction theory, convoluted with an experimental resolution

and/or mosaic spread function of a half-width � and centered

at �G. The re¯ectivity curve RG(�) can be approximated with a

Lorentzian that has the same center and half width � as in

�G(�), as will be discussed in detail in x4.

2.3. Expanded distorted-wave Born approximation

The result based on the second-order Born approximation,

equation (3), includes only the interference term in the

diffracted intensity and a phase-insensitive magnitude-

squared term has been omitted since it is a higher-order term.

For a more rigorous description of the reference-beam

diffraction, an expanded distorted-wave approximation

(EDWA) has been developed (Shen, 1999b,c). This new

approach not only provides the best physical interpretation

(Fig. 3) of the RBD process but also yields a quantitative

analytical description of the RBD intensities that are almost

identical to the full NBEAM dynamical theory (Colella, 1974).

The EDWA approach follows closely the algorithm of the

conventional distorted-wave Born approximation for X-ray

surface scattering studies (Vineyard, 1982; Dietrich & Wagner,

1984; Sinha et al., 1988), with an important revision that a

sinusoidal Fourier component G is added to the distorting

component of the dielectric function (Fig. 3). This sinusoidal

component represents the perturbing G re¯ection charge

density and the resulting distorted wave is in fact composed of

two waves, O and G waves. Instead of the Fresnel theory used

for surface studies, a two-beam dynamical theory (e.g.

Batterman & Cole, 1964) is employed to evaluate these

distorted waves while the subsequent scattering of these waves

is again handled by the Born approximation.

Because of the use of dynamical theory in obtaining the

distorted waves, the EDWA algorithm allows a rigorous

distinction between the Bragg-re¯ection and the Laue-trans-

mission cases for the reference G re¯ection, whereas, in the

Born-approximation calculations of the primary H waves, such

distinctions are neglected. In both the Bragg and the Laue

cases, it can be shown that the diffracted wave ®eld for H is

given by the following compact expression (Shen, 1999c):

DH � D
�1�
H �r0 � jFHÿG=FHjrG exp�i���;

where D
�1�
H is the conventional ®rst-order Born wave ®eld and

r0, rG are the amplitudes of the distorted waves that depend on

the diffraction geometry. For example, in a semi-in®nite

symmetric Bragg case, r0 � 1 and rG � ÿ��G � ��2
G ÿ 1�1=2�,

and, in a thin transparent symmetric Laue case, which applies

to most situations involving macromolecular crystals,

r0 � cos�A�G� � i sin�A�G� and rG � i sin�A�G�=�G. Here we

have used the standard notations, normalized angular par-

ameter �G and PendelloÈsung length A, as in conventional

two-beam dynamical theory. Finally, the diffracted intensity

IH for H is averaged over thickness t of the crystal:

IH � �1=t� R t

0 jDHj2 dz, which takes into account the effect of

primary extinction due to G in Bragg cases and the Pendel-

loÈsung effect in Laue cases (Shen, 1999b,c).

In the case of symmetric G re¯ection from a thick crystal,

the ®nal intensity is given by the following simple analytical

expression (Shen, 1999b):

IH � �1� 2jFHÿGrG=FHj cos��� �G� � jFHÿGrG=FHj2���0=�z�;
�5�

where �0=�z is the normalized extinction correction (Authier,

1986) owing to re¯ection G, which is a function of � and

typically resembles an upside-down re¯ectivity curve.

It should be pointed out that equation (5) includes both the

phase-sensitive and the phase-insensitive terms and is valid for

all measured Bragg re¯ections and for the entire excitation

range of the reference re¯ection G. The most signi®cant

improvements of equation (5) over the second-order Born

approximation equation (3) are re¯ected in the phase-insen-

sitive terms, the squared term and the extinction factor �0=�z,

that contribute most near the center of the G rocking curve.

An example of the EDWA calculation is shown in Fig. 2(a) as

the solid curve for GaAs (317)=(004). It has also been shown

(Shen, 1999b) that the intensities given by equation (5) agree

very well with the NBEAM theory for both weak and strong

primary re¯ections. This theory, and its extension to the

transmission cases (Shen, 1999c), may therefore be used in

RBD data analyses to improve the curve-®tting results that

yield the triplet-phase values.

2.4. Lorentz factor and angular correction

In a RBD experiment, the intensity of any Bragg re¯ection

H is integrated by sweeping the Ewald sphere through the

corresponding reciprocal node H at a velocity determined by
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Figure 3
Schematic illustration of the distorting susceptibility in (a) conventional
distorted-wave approximation (DWA) for surface scattering, and (b)
expanded distorted-wave approximation (EDWA) for reference-beam
diffraction.
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the effective Lorentz factor, which can be obtained by

differentiating equation (1) with respect to �H:

�'H � ÿ�cos �H=�sin � sin ' cos �G����H; �6�
where ��H is an angular width owing to mosaicity and crystal

domain size. This expression is essentially the same as that

given by e.g. Zachariasen (1945), except that the Bragg law for

H has been used to convert the dimension in reciprocal space

to the corresponding change in �H. Equation (6) provides a

way to determine whether a Bragg re¯ection H recorded in a

RBD measurement is not completely recorded within a given

oscillation range, the so-called `partials', owing to a very wide

�'H for example.

In addition to the Lorentz factor equation (6), a differ-

entiation of equation (1) with respect to �G provides a refer-

ence-beam correction angle �'G. This is the correction to the

rotation angle ', as de®ned in equation (1), at which H is

excited when the reference re¯ection G is detuned from its

Bragg condition by a deviation angle ��G:

�'G � ��cos�ÿ sin �H sin �G�=�sin � sin ' cos2 �G����G: �7�
Equation (7) can be used to explain the tilted trajectory in Fig.

2(b) and is useful in estimating the peak-position shifts when

multiple frames of oscillation data are collected at slightly

different �G positions using, for example, a charge-coupled-

device (CCD) X-ray camera. Special care has to be taken for

those re¯ections close to being coplanar (' � 0) and close to

the G reciprocal vector (� � 0).

2.5. Polarization effect

Finally, it is obvious that in general the incident polarization

for H can be different from that for the reference G re¯ection,

unless H is coplanar to G. Assuming that the incident beam

consists of a perpendicular polarization for G, D0 � D0r, it

can be shown that both rH and pH components exist in the

incident beam for H re¯ection:

D0 � D0��rH � pHpH�=�1� p2
H�1=2�;

where

pH � sin '=�cot � cos �G ÿ cos ' sin �G�: �8�
Equation (8) shows that the only situation for which pH � 0 is

the coplanar case ' �0.

It should be noted that the polarization mixing phenom-

enon that is present in conventional multiple-beam diffraction

(Juretschke, 1984; Shen & Finkelstein, 1990, 1992; Shen, 1993)

Figure 4
The ®rst reference-beam diffraction oscillation image taken on a GaAs crystal using an image plate. The oscillation range was 20� and the exposure time
was 40 s at each � step. The interference pro®le along the 16 multiple exposures (with � increasing from right to left) can be seen for all recorded
re¯ections. Similar pro®les have been observed by varying the incident X-ray energy (by 30 eV in 2 eV steps) instead of the rocking angle.



through a double-scattering process (O!G!H) occurs only

in higher-order triple-scattering processes (O!H!G!H) in

the case of reference-beam diffraction if an incident beam is

purely r polarized for the reference re¯ection G. This has

been demonstrated through the second-order Born approxi-

mation (Shen, 1998). Since triple scattering is intrinsically

weaker than double-scattering processes, a practical implica-

tion of lacking polarization mixing in double scattering in

RBD is that it greatly reduces the effect of asymmetry reversal

in the interference pro®les that may exist in the conventional

MBD measurements (Juretschke, 1984). This may therefore

increase the reliability of the RBD phase measurements.

3. Experiments

We have demonstrated the RBD technique both on small-

molecule crystals (Shen, 1998) and on real but good-quality

biological crystals such as tetragonal lysozyme (Shen, 1999a).

Typically, we use unfocused monochromatic 10±13 keV

synchrotron X-rays as the incident beam, with an Si (111)

double-crystal monochromator followed by a mirror for

harmonic rejection. We use a standard four-circle diffrac-

tometer for specimen orientation, an oscillation camera set-up

for exposure controls and an image plate or a CCD as the area

detector for data collection.

3.1. Experiment on GaAs (004)

The ®rst reference-beam diffraction

image was obtained at the CHESS C1

station in June 1997 using a GaAs

crystal with G � �004� as the reference

re¯ection (Shen, 1998). The (004)

re¯ection was aligned to be parallel to

the oscillation axis by adjusting the two

orthogonal cradles on a standard goni-

ometer head. The RBD data were

recorded on an image plate that was

operated in `streak-camera' mode in

order to minimize the read-out errors

for multiple exposures. The raw data

image is shown in Fig. 4 through the

ADXV software. The RBD interference

pro®les of all recorded Bragg re¯ections

are clearly visible in the image, as shown

by the intensity variations along the 16

multiple exposures taken as the rocking

angle � is stepped through the (004)

rocking curve. The measured inter-

ference pro®les agree very well with the

theoretical calculations using either the

n-beam dynamical theory (Colella,

1974) or the second-order Born

approximation equation (3) (Shen,

1998).

3.2. Lysozyme experiments with image
plates

The experiments on tetragonal lyso-

zyme aimed both to test out the feasi-

bility of the RBD method for small

proteins and to develop a practical

procedure for measurements and data

analysis. Initial experiments on lyso-

zyme were performed at CHESS C1 and

F3 bent magnet stations, again using an

image plate in streak-camera mode

(Shen, 1999a). A typical diffraction

image with G � �320�, shown in Fig. 5,

contains nine � steps with a 10 s expo-

sure per step for 1� oscillation range. It
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Figure 5
Reference-beam diffraction data on a tetragonal lysozyme with G = (320), using an image plate.
The inset shows an example of the interference pro®le of one of the re¯ections as indicated by the
arrow. The horizontal axis in the inset represents the sequence number of �� steps in 0.0025�

increments.
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was found that the RBD interference pro®les, even though

much weaker than small-molecule cases, were nevertheless

detectable for as many as 20% of the diffraction spots. An

example of such pro®les is shown in the inset of Fig. 5. These

pro®les were then ®t with an equation based on (3) and the

triplet phases were obtained as the best ®t values of �.

3.3. Lysozyme experiments with CCD

One apparent drawback of using image plates in streak-

camera mode is the arti®cially increased high background

owing to the multiple exposures on the same plate during the

RBD data collection. This would reduce the number of

measurable weaker re¯ections at higher resolutions. The best

way to solve this problem is to use a CCD detector (Fig. 6) that

has a larger dynamic range (16 bit intensity scale on the ADSC

Quantum-1 CCD versus 10 bit logarithmic scale on Fuji image

plates) and can be used for multiple exposures controlled

electronically. These experiments were performed at the A2

and C1 stations of CHESS and some examples of the results

are shown in Fig. 7, which exhibit better quality RBD pro®les

owing to the increased number of � steps and longer exposure

times ± 15 s per degree of oscillation at A2 wiggler station.

It is convenient and important in a RBD measurement to

record the reference re¯ection intensity on the same � image

series so that a true rocking curve of the G re¯ection is

measured simultaneously. This would indicate both the center

�G and the width � of the rocking curve that are needed for

triplet-phase data analysis. Unfortunately, since G is a strong

re¯ection and is aligned along the oscillation axis, its intensity

usually oversaturates the pixels on the image plate or the

CCD.

To overcome this problem, we have installed a small thin

attenuator positioned around the G re¯ected beam next to the

direct-beam stop in front of the area detector, as indicated by

the shadows in the CCD images shown in Fig. 8. The thickness

of the attenuator is adjusted at the peak of the G rocking curve

to prevent intensity saturation. As illustrated in Fig. 7(a), this

method has allowed us to faithfully record the reference-

re¯ection intensities simultaneously with the RBD pro®les,

which is similar to the rocking-curve measurements in X-ray

standing-wave experiments (Batterman, 1964; Bedzyk et al.,

1984).

3.4. Inverse-beam measurements

In order to obtain enantiomorphic information for

noncentrosymmetric crystals and to study the phase-insensi-

tive Umweganregung and Aufhellung effects (Chang et al.,

1991, 1999; Weckert et al., 1993; Weckert & HuÈ mmer, 1997),

we have performed inverse-beam RBD measurements of

Friedel pairs, (H, G, HÿG) and (ÿH, ÿG, GÿH). On a

Figure 6
Reference-beam diffraction set-up using a CCD detector on a standard
four-circle diffractometer. A DC-motor-controlled goniometer head is
used to align a reference re¯ection onto the ' oscillation axis.

Figure 7
Two examples of the measured reference-beam diffraction pro®les using
a CCD detector, along with the rocking curve of the reference re¯ection
G = (230) shown in (a). The solid curves in (b) and (c) are best ®ts to the
data using equation (3) from which triplet phase values �®t can be
obtained. The rocking curve is ®t with a Lorentzian.



standard four-circle diffractrometer, the inverse RBD condi-

tion can be reached by rotating ' to '�180� and � to ��180�

simultaneously (Shen et al., 1999, 2000). This operation is

equivalent to a single rotation of � to ��180� as normally

performed in multiple-wavelength anomalous diffraction

(MAD) experiments. The 180� � rotation was not possible in

the RBD geometry owing to the various spatial constraints on

the existing four-circle diffractometer.

As shown in Fig. 8, the two inverse-beam diffraction images

for the same oscillation range �' are related by a mirror

re¯ection. Automatic indexing with standard crystallographic

programs such as DENZO (Otwinowski & Minor, 1997)

con®rms that all re¯ections recorded in the two frames are

related by Friedel pairs. An example of the RBD pro®les of a

Friedel pair, (32Å4)=(230) and (3Å24Å )=(2Å3Å0), is shown in Fig. 9.

Measurements such as this allow an unambiguous distinction

of the enantiomorphic space groups, P43212 or P41212 in the

case of lysozyme (Shen et al., 1999, 2000), and thus absolute

structures can be determined in the absence of anomalous

signals as already demonstrated with the conventional

multiple-beam diffraction technique (Shen & Finkelstein,

1990; Weckert et al., 1993; Colella, 1995b).

3.5. Results on a quasicrystal

In addition to macromolecular crystals, the RBD technique

can be useful for other material systems in which the diffrac-

tion phase problem exists. An example is an intermetallic

quasicrystal, which is a unique class of materials with no

periodic unit cell yet can produce sharp diffraction peaks in an
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Figure 9
Reference-beam diffraction pro®les of a Friedel pair on lysozyme, (a)
H = (32Å4), G = (230), and (b) H = (3Å24Å ), G = (2Å3Å0), recorded in inverse-
beam reference-beam measurements. The curves are the best ®ts to the
data using equation (3) from which triplet-phase values of �®t = ÿ116 (8)�

for the (32Å4) and �®t = 77 (8)� for the (3Å24Å) are obtained.

Figure 8
Inverse-beam related reference-beam diffraction patterns on tetragonal
lysozyme using a CCD detector, (a) G = (230) and (b) G = (2Å3Å0), which
are mirror images of each other.
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X-ray diffraction experiment. These peaks are generally

indexed by six integers representing a six-dimensional reci-

procal space. To date, only a few attempts have been made

towards ®nding a solution to the phase problem for quasi-

crystal structures (Lee et al., 1996; Zhang et al., 1998; for a

recent review, see Elser, 1999).

To help solve this problem, we have performed a reference-

beam diffraction experiment on an AlPdMn quasicrystal.

The reference re¯ection used in our experiment was a

G � �0120�12� twofold re¯ection (20=32 re¯ection). The RBD

data are recorded with a CCD detector. In Fig. 10, we show a

typical diffraction image with an oscillation range of

�' � 16� and an exposure time of 40 s at each � step. The

inset shows the RBD pro®le of one of the re¯ections,

H � ��112�1�12�, where the interference effect can be clearly

seen. In addition to the Bragg peaks, signi®cant diffuse

scattering signals are also recorded on the same image, which

exhibit in some cases a pentagon-shaped contour. A more

complete data analysis is in progress and the results will be

reported in a future article.

4. Data processing

With the aim to make RBD a real practical technique that can

be used not only by X-ray specialists but also by crystal-

lographers with a broad range of backgrounds, we have

devoted considerable efforts to RBD data processing and

analyses and have developed a procedure that would auto-

matically extract the triplet-phase values for a large number of

Bragg re¯ections collected in a RBD experiment. This

procedure consists of the following principal steps.

4.1. Indexing, integration and scaling

The ®rst step in analyzing a series of RBD images is to index

the oscillation pattern. Even though each image is obtained by

rotating the crystal around an axis that is not perpendicular to

the incident beam, we have found that the existing crystal-

lographic software packages such as DENZO (Otwinowski &

Minor, 1997) and DPS (Steller et al., 1997) can be reliably used

for automatically indexing a RBD pattern. This procedure can

also be used to obtain an initial

orientation matrix for alignment of

the reference re¯ection.

With a diffraction pattern indexed,

integrated intensities of each Bragg

re¯ection are evaluated, for each �
step, using the same software

package, to provide a series of inte-

grated intensities IH(�). These inten-

sities are then scaled using ScalePack

in the CCP4 package (Collaborative

Computational Project, Number 4,

1994) to take into account the inci-

dent-beam variations among other

experimental factors. We have found

that the automatic scaling function in

the package provides results that

agree very well with the experi-

mentally measured incident-beam

monitor counts, although the latter

have been used in almost all cases in

our analyses. The end result of this

step is a series of properly scaled

integrated intensities IH(�), not

merged among the symmetry-related

peaks, of all recorded Bragg re¯ec-

tions in the experiment.

4.2. Curve fitting for triplet phases

The second step in the RBD data

analysis is to extract the triplet-phase

values � from the IH(�) data pro®les.

To do this automatically with minimal

operator intervention, we have

developed a curve-®tting program to

®t the IH(�) data series to a RBD

interference function, equation (3) or

Figure 10
An example of the reference-beam diffraction pattern from an AlPdMn quasicrystal recorded on a
CCD, with intensities in gray linear scale. The interference pro®le of one of the re¯ections is shown in
the inset.



(5), which can directly yield the best-®t values of � for all

recorded re¯ections, as already illustrated in Figs. 7, 9 and 10.

The ®tting function we have used so far has been entirely

based on the result from the second-order Born approxima-

tion, equation (3). With RG(�) substituted by a Lorentzian and

�G(�) by equation (4), the ®tting function is de®ned as the

following:

IH��� � C � ÿp=f1� ��� ÿ �G�=��2g1=2
�

cos��� �G����; �9�

which involves only four ®tting parameters: base intensity C,

peak of the interference term p, center of the rocking curve �G

and, ®nally, triplet phase �. The half width � of the rocking

curve is usually taken from the experimental measurements.

Even though its center �G is also known from a simultaneously

measured rocking curve, we allow �G to vary within a narrow

region of �� to account for theoretical approximations

involved in arriving at equation (9), as well as possible

experimental errors. In some cases, a ®fth parameter is used to

take into account a sloped baseline intensity, which may exist

when the peak is a partial re¯ection.

4.3. Rejection of unreliable phases

Finally, it should be pointed out that ®tting all recorded

RBD intensity series automatically does not mean that every

re¯ection exhibits the true reference-beam interference

pattern. The second step outlined above is merely part of an

automated procedure and the next step is to develop a

goodness-of-®t criterion that would allow us to reject the bad

intensity pro®les that for various reasons do not actually

contain the true interference information.

Contrary to some of the existing criteria on observable

multiple-beam interference effects based on magnitude ratios

of the involved structure factors (Weckert & HuÈ mmer, 1997),

the rejection criteria that have been developed for the RBD

analysis rely mostly on the error assessments of the experi-

mental measurements through curve ®tting to equation (9).

The criteria established this way depend on, e.g., the �2 value

of the best ®t, the error bar of ®tting parameter �, the

magnitude of p and whether �G is at its boundary.

To illustrate this procedure, we show in Fig. 11 a comparison

of measured triplet phases of tetragonal lysozyme with the

calculated phases based on a data entry in the Protein Data

Bank (Vaney et al., 1995). The histogram or occurrence

distribution as a function of phase error, de®ned as the

difference between the measured and the calculated phases, of

all 1317 measured triplet phases with �2 > 0 resulted from the

curve-®tting step is shown as squares, with the solid curve as a

guide to the eye. The distribution can be viewed as a Gaussian

peak centered at zero, which contains the true phase infor-

mation, on a randomly distributed background. We then apply

a rejection criterion that eliminates all measured phases with

the error bars on � greater than 45� and with the center �G at

its boundaries of the allowed range. As a result, this procedure

drastically reduces the random background in the distribution

while it retains the Gaussian peak to a large degree, as shown

by the circles in Fig. 11. The ®nal 513 triplet phases obtained in

this way have a median phase error of 54� and are much more

reliable than the whole data set. It is expected that the relia-

bility of the measured triplet phases can be increased further

once the inverse-beam measurements of Friedel pairs (Shen et

al., 1999, 2000) are fully integrated into the data analysis.

Further constraints on symmetry-related and/or redundant

re¯ections may also be incorporated, which may lead to

additional rejection criteria or to more accurate phase values.

With the automated data-processing steps outlined above, a

large number of experimentally measured triplet phases are

deduced along with their weighting factors that indicate the

reliability of the phases. These phases obtained in RBD

experiments can then be used in existing phasing programs

such as those based on direct methods (Weeks et al., 1999,

2000), or in other possible algorithms proposed with conven-

tional MBD data (Mo et al., 1996; Weckert & HuÈ mmer, 1997;

Mathiesen & Mo, 1998), to solve the crystal structure of the

specimen.

5. Discussion and conclusions

There are several signi®cant practical advantages of the RBD

technique over the traditional  -scan method for multiple-

beam diffraction. First, of course, the parallel data-collection

method of RBD allows the measurements of many three-
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Figure 11
Histogram distribution of measured triplet phases versus the phase error,
de®ned as the difference between the measured and the calculated triplet
phases. The squares represent all phases resulting from the automatic
curve ®tting and the circles represent a ®nal set of phases after the
rejection criterion is applied as indicated. The solid curves are ®ts to a
Gaussian plus a random background.
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beam pro®les to be performed in a much shorter time than the

traditional method, which can therefore minimize the effect of

crystal radiation damage at a synchrotron source. Second,

since the reference G serves as the common detour re¯ection,

the dynamical phase shift �G is well de®ned for a given

rocking-angle direction and no ambiguities exist as in the case

of the  -scan technique where two situations, `in' or `out'

(Chang, 1982, 1998), need to be distinguished. Third, as

already mentioned in x2, there are no polarization switching

factors in reference-beam geometry if the incident beam is

purely or mostly r polarized for the G re¯ection, which is most

likely the case at a synchrotron source. Finally, it is possible

that a larger out-of-plane horizontal divergence in the incident

beam can be tolerated in a RBD experiment compared to the

 -scan method. This ®ts the natural beam divergence of a

synchrotron beam very well.

In terms of data-collection procedures, the RBD method

presented here is very similar to multiple-wavelength anom-

alous diffraction (MAD) experiments. Here the angular

setting of the reference re¯ection G serves the same role as the

atomic absorption-edge energy of a heavy atom. Multiple

oscillation data sets are collected around the Bragg angle �G,

much like those around the absorption edge, with similar

useful signal levels of a few percent for proteins. In fact,

instead of changing the rocking angle �, one can change the

incident energy to pass through the reference-re¯ection

rocking curve and take multiple data sets at several energies,

as mentioned in Fig. 4. An additional advantage is that no

global scaling is necessary in RBD measurements so that

incomplete data sets from different crystals can easily be

combined. This advantage may be signi®cant since radiation

damage of biological samples is of serious concern in many

crystallography experiments.

As for how the measured phase information is used to help

to solve a crystal structure, the algorithms for the RBD data

sets are probably different from the MAD technique. So far,

the most promising route to utilize the RBD measured phases

is to incorporate the phase information into the traditional or

dual-space direct-methods algorithms (Weeks et al., 1998;

Hauptman et al., 1999). One interesting question that needs to

be addressed is the following. Given the way a RBD experi-

ment is performed, there is very little overlap among the

individual structure-factor phases in a given data set involving

a single reference re¯ection G. Therefore, how many such data

sets with different G's, either complete or partial, does one

need to solve a realistic structure? Preliminary simulations by

Weeks et al. (1999, 2000) using a uni®ed Shake-and-Bake

program (Miller et al., 1993) suggest that a structural solution

is possible for a small protein (crambin) with even a single

measured phase data set (single G) if the data set is rather

complete (though less than atomic resolution) and accurate

with a measurement error of less than 20� or so in the

measured triplet phases. The tolerance on the phase errors can

be as high as 50� if three or more RBD data sets are measured.

These preliminary results are encouraging but further studies

are needed to reach a general conclusion.

In addition to theoretical strategies, several challenging

issues need to be resolved in experiments before the RBD

technique can be widely adopted in everyday crystallography.

In order to speed up the initial alignment of a reference

re¯ection for an arbitrary crystal system, we have designed

and constructed a special computer-controlled � goniometer

that can be mounted on the ' stage of a standard four-circle

diffractometer (Fig. 12). With this ®ve-circle � set-up, one can

automatically orient any Bragg re¯ection along ', which

serves as the crystal oscillation axis. This eliminates one of the

time-consuming steps in a RBD experiment. Other experi-

mental problems include how to handle increased crystal

mosaicity on freezing specimens, how to minimize the effects

of overlapping multiple re¯ections for larger structures, and

how to improve the intensity integration statistics on area

detectors for better data accuracy. Even though the accuracy

of the RBD-measured triplet phases may never be able to

approach that of using the traditional  -scanning method and

a point detector (Weckert & HuÈ mmer, 1997), it is entirely

possible that its measurement errors would be somewhat

compensated by the large number of measured phases that can

be used in structural determination routines.

In summary, we have demonstrated that the reference-beam

diffraction technique is a promising and practical approach of

solving the phase problem in X-ray crystallography, without

the need for heavy-atom derivatives. By incorporating the

principle of three-beam diffraction into the standard oscil-

lating-crystal data-collection technique and by a recently

developed automated data-reduction procedure, a large

number of Bragg-re¯ection triplet phases can be measured in

a RBD experiment using an area detector within a relatively

short time period. With further research and development, we

believe that the new method will have a signi®cant impact on

crystallography data collection and structural determinations.
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Figure 12
Schematic drawing of a new ®ve-circle diffractometer design for
reference-beam diffraction experiment, where an additional �-goni-
ometer (�, �) mounted on the oscillation ' axis allows an easy alignment
of any Bragg peak used as the reference re¯ection. An incident beam
would be along the direction out of the page in this drawing.



participating and helping in the experiments. Thanks are due

to B. Batterman, E. Fontes, S. Ealick, D. Thiel, R. Thorne and

S. Gruner at Cornell, as well as R. Colella and M. Rossmann

at Purdue for useful discussions. Collaborations with

H. Hauptman, C. Weeks, H. Xu and others at the Hauptman±

Woodward Institute are also greatly appreciated. This work

is supported by NSF through CHESS under Grant DMR

97-13424.

References

Authier, A. (1986). Acta Cryst. A42, 414±426.
Batterman, B. W. (1964). Phys. Rev. 133, A759±A764.
Batterman, B. W. & Cole, H. (1964). Rev. Mod. Phys. 36, 681±717.
Bedzyk, M. J., Materlik, G. & Kovalchuk, M. V. (1984). Phys. Rev. B,

30, 2453±2461.
Caticha-Ellis, S. (1975). Jpn. J. Appl. Phys. 14, 603±611.
Chang, S. L. (1982). Phys. Rev. Lett. 48, 163.
Chang, S. L. (1984). Multiple Diffraction of X-rays in Crystals. New

York: Springer Verlag.
Chang, S. L. (1998). Acta Cryst. A54, 886±894.
Chang, S. L., Chao, C. H., Huang, Y. S., Jean, Y. C., Sheu, H. S., Liang,

F. J., Chien, H. C., Chen, C. K. & Yuan, H. S. (1999). Acta Cryst.
A55, 933±938.

Chang, S. L., King, H. E. Jr, Huang, M-T. & Gao, Y. (1991). Phys. Rev.
Lett. 67, 3113.

Chapman, L. D., Yoder, D. R. & Colella, R. (1981). Phys. Rev. Lett.
46, 1578±1581.

Cole, H., Chambers, F. W. & Dunn, H. M. (1962). Acta Cryst. 15,
138±144.

Colella, R. (1974). Acta Cryst. A30, 413±423.
Colella, R. (1995a). Comments Condens. Mater. Phys. 17, 175±215.
Colella, R. (1995b). Acta Cryst. A51, 438±440.
Collaborative Computational Project, Number 4 (1994). Acta Cryst.

D50, 760±763.
Dietrich, S. & Wagner, H. (1984). Z. Phys. B, 56, 207.
Elser, V. (1999). Acta Cryst. A55, 489±499.
Giacovazzo, C., Siliqi, D. & Ralph, A. (1994). Acta Cryst. A50,

503±510.
Hart, M. & Lang, A. R. (1961). Phys. Rev. Lett. 7, 120±121.
Hauptman, H. A., Weeks, C. M., Xu, H. & Shen, Q. (1999). XVIIIth

IUCr Congress, Glasgow, Scotland, Abstract P12.02.012
Hendrickson, W. (1991). Science, 254, 51.
Juretschke, H. J. (1982). Phys. Rev. Lett. 48, 1487±1489.
Juretschke, H. J. (1984). Acta Cryst. A40, 379±389.
Lee, H., Colella, R. & Shen, Q. (1996). Phys. Rev. B, 54, 214±221.

Mathiesen, R. H. & Mo, F. (1998). Acta Cryst. D54, 237±242.
Mathiesen, R. H., Mo, F., Eikenes, A., Nyborg, T. & Larsen, H. B.

(1998). Acta Cryst. A54, 338±347.
Miller, R., DeTitta, G. T., Jones, R., Langs, D. A., Weeks, C. M. &

Hauptman, H. A. (1993). Science, 259, 1430.
Mo, F., Mathiesen, R. H., Hauback, B. C. & Adman, E. T. (1996). Acta

Cryst. D52, 893±900.
Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307±326.
Post, B. (1977). Phys. Rev. Lett. 39, 760±763.
Schmidt, M. C. & Colella, R. (1985). Phys. Rev. Lett. 55, 715±718.
Shen, Q. (1986). Acta Cryst. A42, 525±533.
Shen, Q. (1993). Acta Cryst. A49, 605±613.
Shen, Q. (1998). Phys. Rev. Lett. 80, 3268±3271.
Shen, Q. (1999a). Phys. Rev. B, 59, 11109±11112.
Shen, Q. (1999b). Phys. Rev. Lett. 83, 4784±4787.
Shen, Q. (1999c). In Methods in Materials Research, edited by E. N.

Kaufmann. New York: Wiley. In the press.
Shen, Q. & Colella, R. (1987). Nature (London), 329, 232±233.
Shen, Q. & Finkelstein, K. D. (1990). Phys. Rev. Lett. 65, 3337±3340.
Shen, Q. & Finkelstein, K. D. (1992). Phys. Rev. B, 45, 5075±5078.
Shen, Q., Kycia, S. & Dobrianov, I. (1999). XVIIIth IUCr Congress,

Glasgow, Scotland, Abstract 07.OA.005.
Shen, Q., Kycia, S. & Dobrianov, I. (2000). Acta Cryst. A56, 264±267.
Sinha, S. K., Sirota, E. B., Garoff, S. & Stanley, H. B. (1988). Phys.

Rev. B, 38, 2297.
Steller, I., Bolotovsky, R. & Rossmann, M. G. (1997). J. Appl. Cryst.

30, 1036±1040.
Tegze, M. & Faigel, G. (1996). Nature (London), 380, 49.
Thorkildsen, G. (1987). Acta Cryst. A43, 361±369.
Thorkildsen, G. & Larsen, H. B. (1998). Acta Cryst. A54, 120±128.
Tischler, J. Z. & Batterman, B. W. (1986). Acta Cryst. A42, 510±514.
Vaney, M. C., Maignan, S., Ries-Kautt, M. & Ducruix, A. (1995).

Protein Data Bank, PDB ID = 193L.
Vineyard, G. H. (1982). Phys. Rev. B, 26, 4146.
Weckert, E. & HuÈ mmer, K. (1997). Acta Cryst. A53, 108±143.
Weckert, E., Schwegle, W. & HuÈ mmer, K. (1993). Proc. R. Soc.

London Ser. A, 442, 33±46.
Weeks, C. M., Miller, R. & Hauptman, H. A. (1998). Direct Methods

for Solving Macromolecular Structures, edited by S. Fortier, pp.
463±468. Dordrecht: Kluwer Academic Publishers.

Weeks, C. M., Xu, H., Hauptman, H. A. & Shen, Q. (1999). Am.
Crystallogr. Assoc. Annual Meeting, Buffalo, NY, USA, Abstract
PT10.

Weeks, C. M., Xu, H., Hauptman, H. A. & Shen, Q. (2000). Acta
Cryst. A56, 280±283.

Zachariasen, W. H. (1945). Theory of X-ray Diffraction in Crystals.
New York: Dover.

Zhang, Y., Colella, R., Shen, Q. & Kycia, S. W. (1998). Acta Cryst.
A54, 411±415.

Acta Cryst. (2000). A56, 268±279 Shen et al. � Triplet-phase measurements 279

research papers


